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ABSTRACT
Recently, a mismatch in acoustic conditions such as a tempo-

ral recording gap as well as different recording devices for the

development and the evaluation data has been considered in

Acoustic Scene Classification (ASC). This brings ASC closer

to real world conditions. In this paper, we address ASC with

mismatching recording devices. This has been introduced as

task 1B of the DCASE 2018 challenge. We proposed a flex-

ible and robust model that uses a mixture of experts (MoE)

layer replacing the fully connected dense layer such that each

expert can adapt to the specific domains of the data. Further-

more, we observe different Convolutional Neural Network

(CNN) models as well as the number of the experts of the

MoE dense layer using log-mel features. In addition, we per-

form mixup data augmentation to enhance the robustness of

our models. In experiments, the classification performance is

66.1% using 15 experts in the MoE dense layer with approx-

imately 2M parameters. This outperforms the best model of

task 1B of the DCASE 2018 challenge by 2.5% (absolute).

This model uses an ensemble selection of 12 individual mod-

els with ∼12M parameters.

Index Terms— Acoustic scene classification, convolu-

tional neural network, mixture of experts layer, mixture of

softmaxes.

1. INTRODUCTION

Acoustic scene classification (ASC) is a multi-class classifi-

cation task classifying the recorded environment sounds as

specific acoustic scenes that characterize either the location

or situation such as park, metro station, tram, etc. It has been

a task in the Detection and Classification of Acoustic Scenes

and Events (DCASE) challenges providing the largest pub-

licly available data sets for ASC.

Compared to ASC tasks of DCASE 2013 and DCASE

2016, the difficulty has been increased for DCASE 2018. Be-

side providing shorter segments of 10 s of audio data, there

∗Thanks to Vietnamese - Austrian Government Scholarship for funding.
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are mismatches between the development data set and the

evaluation set. According to [1], there was a mismatch in

acoustic conditions in the evaluation and the development set

of the DCASE 2017 challenge i.e. data sets were recorded

in similar locations with the same device but almost one year

later. This temporal gap is the reason of a significant drop

in performance of all systems. The DCASE 2018 challenge

introduced task 1B with data sets recorded by four different

devices in 6 different cities in Europe instead of only one city.

This causes even more mismatch in the data. Especially, a part

of the evaluation set is a compressed version of recorded au-

dio data from device D that is not included in the development

data set. This causes an extreme mismatch in the DCASE

2018 challenge data.

Recent ASC research mostly uses log-mel energies and

mel-frequency cepstral coefficients (MFCC) as features. Be-

side that, harmonic-percussive source separation (HPSS) and

I-vectors extracted from these mel-frequency scales have

been effective features contributing to the success in the last

DCASE challenges [2], [3], [4]. Some systems use the raw

waveform [5] and conventional signal processing methods

such as wavelet decomposition [6], [7] for feature extraction.

For classification, deep learning (DL) has been the preferred

solution. Beside well-known DL models used for image

databases such the VGGNet [2], [3], [4], and Xception [8],

popular models for acoustic data such as Recurrent Neural

Networks (RNNs) or Long Short term Memmories (LSTMs)

have been used [9], [10], [11]. Recently, attention mecha-

nisms have been introduced [12], [13], [14] to supplement

vanilla DL models. In addition, techniques of data augmen-

tation such as Generative Adversarial Networks (GANs) [15]

and mixup have been used [3]. Furthermore, ensemble meth-

ods helped the systems to the top performances in DCASE

2017 [2] and DCASE 2018 [3], [16].

Although a variety of ASC systems have been proposed,

there is a limited number that focused on the analysis of the

mismatching acoustic conditions. In this paper, we focus on

the DCASE 2018 data of task 1B where the recording took

place at several cities with different devices. We propose a
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robust model that includes many experts modelling specific

aspects in the feature spaces. This approach has been suc-

cessful for the tasks of language modeling and machine trans-

lation where the feature spaces are much larger compared to

that of ASC, [17], [18], [19]. We feed log-mel energies to var-

ious Convolutional Neural Network (CNN) structures where

a mixture of experts layer is introduced as component of the

CNN models. We replaced the fully connected dense layer by

the mixture of experts layer. In addition, mixup data augmen-

tation is applied to leverage the performance of our system.

The rest of paper is organized as follows. Related work

for mixture of experts is introduced in Section 2. Section 3

presents the proposed ASC system, including the audio pre-

processing, the mixture of experts layer, a variety of CNN

structures and mixup data augmentation. In Section 4, we

provide experiments and evaluate the performance of the pro-

posed approach. Section 5 concludes the paper.

2. RELATED WORK FOR MIXTURE OF EXPERTS

The mixture of experts layer proposed in this work is inspired

from the long-existing idea called Mixture of Experts (MoE)

in 1991 [20]. Both the MoE and the MoE layer are composed

of a set of modules referred to as expert networks which are

suitable to model various regions of the input space. A gat-

ing network addresses the suitable expert for each input re-

gion. According to related work of MoE in [18], a MoE is one

model that was introduced by different types of expert archi-

tectures such as support vector machines, Gaussian processes

and deep networks, while a MoE layer is a part of a deep

model that can be any specific layer in a network [18], [19].

These systems have been useful for language modeling and

machine translation tasks.

There are different structures of an MoE layer related to

the gating network and expert networks. For example, the

sparsely-gated MoE layer of Shazeer et al. [18] embedded

within a recurrent language model. They propose a noisy top-

K gating instead of using a softmax gating by adding sparsity

and noise before the softmax function. It leads to a computa-

tional benefit as well as it allows for training of a very large

network architecture including up to thousand experts. In ad-

dition, Yang et al. [19] considered a MoE layer as a mixture of

contexts (MoC). This is located before the output layer in the

network model; beside that, they mainly proposed a mixture

of softmax (MoS) layer replacing the softmax function in the

output layer to break the softmax bottleneck where activations

of experts and gating networks are softmax. Furthermore,

Orhan [21] observed that the softmax bottleneck is a special

case of a more general degeneracy problem that can happen

even when a mapping of input spaces and output spaces of

the MoE layer has the same dimensionality and even when

the nonlinearity is not a softmax function. To prove this, they

proposed a MoE layer that is similar to the MoS but where

the softmax activation of the experts is replaced by ReLU ac-

Mono Audio Input 10s Log-Mels 2s

Model

Argmax of
Probability

Mean
(over 10s)

Detected
Scene

Fig. 1. Proposed System.

tivations and no Tanh activation for the linear combination of

the inputs is performed.

3. PROPOSED ARCHITECTURE

The proposed system is illustrated in Fig.1. The system con-

sists of three stages. First, the mono audio signals are con-

verted to time-frequency representation and then split into

2s segments. These features are fed to a CNN model with

a dense MoE layer replacing the traditional fully connected

dense layer. Finally, the probability outputs of the CNN are

averaged over 5 continuous 2s segments and then the argmax

operation is performed to obtain the final label predictions.

3.1. Audio pre-processing

This system is using the DCASE 2018 task 1 data set which

is recorded with different recording devices at different cities.

We keep the sampling rate at 44.1 kHz. (Since)the audio seg-

ments are only 10 s. We extract 128 bin mel energies of

the provided mono audio such that obtain the spectral char-

acteristics of the data. The window function of the short-time

Fourier transform (STFT) is a Hann window and the window

size is selected as 40ms with 20ms hop size.

We use only log-mel energies for to single input (SI)

CNNs. They are more efficient than multiple inputs (MI)

CNNs where a pair of the mel spectrogram and its nearest

neighbor filtered version are used for task 1B of DCASE

2018 [16]. Furthermore, based on the results of the best sys-

tems in DCASE 2017 and 2018, and our experimental results,

we can see that processing acoustic scenes in short segments

is better than using the entire segments. We split audio seg-

ments into 2 s samples (128 bins x 100 frames per sample).

All features are converted into logarithmic scale and normal-

ized to zero mean and unit variance.

3.2. Mixture of Experts Layers

There are two types of the MoE layer introduced in [21],

namely, the dense MoE layer and the convolutional MoE

layer. They are mathematically defined in eq.1 and eq.2, i.e.

y =

K∑
k=1

g(VT
k · z+ bk)︸ ︷︷ ︸
Gk(z)

· f(Wk · z+ ck)︸ ︷︷ ︸
Ek(z)

, (1)
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Fig. 2. A Mixture of Experts (MoE) layer embedded within a

ASC model.

y =

K∑
k=1

g(VT
k · z+ bk)︸ ︷︷ ︸
Gk(z)

· f(Wk ∗ z+ ck)︸ ︷︷ ︸
Ek(z)

, (2)

where K denotes the number of experts, g(·) is the softmax

gating, f(·) and f(∗) are the experts using ReLU activation

with a linear operation for dense MoE layers and a convo-

lution operation for convolutional MoE layers, respectively.

Vk, bk and Wk, ck denote the weights and the bias of the

gating function and the expert k, respectively, while z is the

input vector of the gating and expert function.

The mixture of experts layer is illustrated as a red block

in the Figure 2. The dense and convolutional MoE layers can

be used in the same way as the corresponding dense and con-

volutional layers1.

In this work, we use the dense mixture of experts layer

as a fully connected layer between the global average pooling

and the output (softmax) layer. There are several experts in

the dense MoE layer and each expert is considered as a com-

ponent consultant corresponding to specific features extracted

from previous layers of a CNN model. These experts enable

to adapt to a diversity of extracted features from the different

recording devices and as a result, it enhances the performance

of the model compared to using only a fully connected dense

layer. Figure 2 shows the structure of a MoE layer embedded

in our ASC system.

In addition, we also tried to replace the classical convo-

lutional layers by the convolutional MoE layers of one CNN

model using two single CNN blocks as a feature extractor.

We empirically observed that the convolutional MoE layers

are not helpful for the system in terms of accuracy and num-

ber of parameters as well as computation time.

1The source code of the MoE layers are provided by Emin Orhan in

https://github.com/eminorhan/mixture-of-experts.

Convolutional block (3x3)

Maxpooling Layer (3x3)

Convolutional block (3x3)

Global average pooling

Dense MoE layer (256 units)

Softmax layer

Zero-padding

Batch normalization

Convolutional layer

Activation(ReLU)

Single Convolutional block

Zero-padding

Batch normalization

Convolutional layer

Activation(ReLU)

Zero-padding

Batch normalization

Convolutional layer

Activation(ReLU)

Double Convolutional block

Or

Fig. 3. A Mixture of Experts (MoE) layer embedded within a

CNN model.

3.3. Convolutional Neural Networks

In this paper, we consider CNNs as extractors of high-level

features and observe six different CNN structures by adjust-

ing the depth of the CNNs and the structure of the convolu-

tional blocks as well as different numbers of single convo-

lutional blocks and double convolutional blocks which were

used in the best model of the DCASE 2018 task 1B [16].

However, the purpose is to empirically determine only one

suitable CNN structure that is able to learn informative high-

level features for the MoE layer. In the DCASE 2018 task

1B [16], these CNN structures build component models and

their outputs are fed to an ensemble model. Both approaches

differ in the number of parameters.

Similarly, we proposed different CNN structures2 that use

either single convolutional blocks or double convolutional

blocks as shown in Figure 3. A single convolutional block

consists of zero-padding (1x1 size), batch normalization, 2D

convolution layers (3x3 filter size) followed by Rectifier Lin-

ear Units (ReLUs) activation functions. A double convolu-

tional block is a repeated structure of two single convolutional

blocks. After the single/double convolutional block, we use a

max-pooling layer (3x3 size) for the purpose of reducing di-

mensionality of the convolutional output and to ease the com-

putation for the following layers as well as to reduce over-

fitting in the training phase. In addition, the pooling of the

last convolutional block is replaced by global average pool-

ing (GAP) layer follows the last convolution block instead of

max-pooling. The GAP layer allows to reduce the number of

outputs of the previous layer before feeding the data to the

dense MoE layer. The aim is to maintain the global charac-

teristics of each input sample, so that the ASC model is less

bulky and sufficiently strong to deal with the complexity im-

posed by the mismatch in the data. Figure 3 shows the struc-

ture of the CNN model using single and double convolutional

blocks.

2The models are implemented on Keras https://github.com/keras-

team/keras
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Based on the CNNs setup in [16] , we select the number of

filters for the convolutional layers of the CNNs including 2, 3

and 4 single or double convolutional blocks as 32 - 256, 32 -

128 - 256 and 32 - 64 - 128 - 256, respectively. The same size

of 3x3 filters is also selected for both convolutional layers of

each double convolutional block.

3.4. Mixup data augmentation

Mixup [22] is an effective data augmentation method used

in most of the best systems in the recent DCASE chal-

lenge [3], [4]. Mixup constructs virtual training examples by

a convex combination of two randomly selected training data

samples (xi, yi) and (xj , yj), i.e.

x̃ = λxi + (1− λ)xj ,

ỹ = λyi + (1− λ)yj ,
(3)

where xi and xj are 2s samples (log-mel spectrogram) and yi
and yj are one-hot encoded class labels i.e. output vectors.

λ ∈ [0, 1] is acquired by sampling from a beta distribution

Beta(α, α) with α being a hyper parameter. We use an α of

0.2. We assess the impact of mixup data augmentation on the

system performance.

4. EXPERIMENTS

4.1. Data

The audio data set for the ASC task 1B [1] is the TUT Urban

Acoustic Scene 2018 Mobile data recorded in six European

cities. It consists of 10 scenes. The development set is com-

prised of the task 1A data set recorded by using the same bin-

aural microphone at a sampling rate of 48kHz. They are re-

sampled and averaged into a single channel. A small amount

of data is recorded by other devices. The original recordings

were split into 10-second segments that are provided in the

individual files. The data setup is as follows:

• Device A: 24 hours (8640 segments, 864 segments per

acoustic scene)

• Device B: 2 hours (720 segments, 72 segments per

acoustic scene)

• Device C: 2 hours (720 segments, 72 segments per

acoustic scene)

The training subset is composed of 6122 segments from

device A, 540 segments from device B, and 540 segments

from device C. The test subset contains 2518 segments from

device A, 180 segments from device B, and 180 segments

from device C. Because the evaluation data set has been pro-

vided without ground truth, we use a training subset and a test

subset of the development set for training and evaluating the

models, respectively.

Fig. 4. Comparison of the baseline system, the best model of

DCASE 2018 task 1B and the best MoE layer models with

expert numbers ranging from 0 to 20.

4.2. Setup

The validation set accounts for approximately 30% of the

original training data and there are no segments from the same

location and city in both training and validation data sets.

Training the network is carried out by optimizing the cate-

gorical cross-entropy using the stochastic gradient decent op-

timizer at a learning rate of 0.01. We use Glorot uniform data

to initialize the network weights. The number of epochs and

batch size was 500 and 128, respectively. Data is shuffled

between the epochs. Model performance is evaluated on the

validation set after each epoch and the selected model is the

best performing one on the validation set.

4.3. Performance on the test set

We run experiments for 6 CNN structures (db4cnn, db3cnn,

db2cnn, s4cnn, s3cnn and s2cnn where db/s denote for dou-

ble / single convolutional blocks) combined with mixup data

augmentation. We use either no dense MoE layer or 2, 5, 10,

15 and 20 experts of the dense MoE layer. We represent the

highest average performances for Device B and C as well as

the performances among the three recording devices A, B and

C. Furthermore, in order to assess the role of mixup data aug-

mentation in our system, we test the vanilla CNN models and

the best MoE layer configurations for the case of mixup/ no

mixup. In addition, we test a model using mixup and convo-

lutional MoE layers replacing the vanilla convolutional layers

of our simplest CNN structure. The performances including

the DCASE 2018 baseline system and the best model for task

1B of the DCASE 2018 challenge are presented in Table 1

and Figure 4.

Generally, we can see from Table 1 that the accuracy of

our models for Device A is always higher than that of Device

B and C, while the accuracy for Device B is almost always
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lowest among the 3 devices. The reason could be the low

quantity of the training set samples recorded by Device B and

C compared to Device A. The quality of these devices could

also affect the quality of the recordings where device B seems

to be the worst device among them. In particular, it includes

more noise as well as degradation of audio signal quality than

the others. This causes more difficulties in scene classifica-

tion.

Furthermore, the proposed models composed of 4 dou-

ble convolutional blocks with or without mixup data aug-

mentation outperform the baseline by approximately 15% in

terms of accuracy. When using mixup the accuracy of E-0-
Mu(s3cnn) is on par with the best model of the challenge for

Device A while its site in term of parameters is approximately

30 times lower. Although there are some dense MoE layer

models achieving 70% or higher accuracy for device A or

C, they can not outperform the model using data mixup and

4 double convolutional blocks with 15 experts in the dense

MoE layer i.e. E-15-Mu(db4cnn). This is the best model

among the proposed models. It achieves 66.1% classification

accuracy. However, when keeping the same model structure

and without the data mixup technique, the performance drops

by 4.4% (absolute). Based on these results, we can conclude

that mixup is the key factor leveraging the performance of

our proposed models. Additionally, the 15 experts of convo-

lutional MoE layer for two single convolutional blocks Ecnn-
15-Mu-s2cnn can outperform the baseline system. However,

this model comes with more than 35M parameters while there

are around 2M or less than 2M parameters for the models us-

ing vanilla CNN layers and the dense MoE layer. The depth

of the CNN model causes the large number of parameters.

Finally, our model outperforms the best DCASE 2018

system for task 1B in both accuracy i.e. 66.1% versus 63.6 %

as well as model size i.e. around 2M versus 12M parameters,

respectively. Table 2 shows class-wise accuracy of the base-

line models of the DCASE 2018 challenge and our proposed

model. By comparing performance of the individual scenes,

we can see that the proposed model and the best model of the

DCASE 2018 challenge have a similar accuracy for park and

street-traffic. These are the easiest classes to recognize for

both models while the easiest scene for the baseline system is

bus. Metro is the most difficult scene for our model while the

most difficult class to recognize for both compared models is

tram.

5. CONCLUSION

This paper proposes a robust ASC system using a mixture of

experts (MoE) layer as part of the CNN model. Furthermore,

mixup data augmentation is used. Our system achieves 66.1%

of accuracy on the test set of the DCASE 2018 task 1B. This

is 2.5% (absolute) higher than of the best system in the same

challenge task, while the complexity of our model in terms

of number of parameters is approximately one sixth of the

Table 1. Accuracy (in %) and number of parameters of cor-

responding models: Ecnn-15 denotes the model using a con-

volutional MoE layer with 15 experts, E-0 denotes a vanilla

CNN without dense MoE layer, E-i denotes the model us-

ing dense MoE layer with i experts, Mu denotes mixup data

augmentation, noMu denotes no mixup data augmentation,

(dbjcnn) denotes a CNN model including j double CNN

blocks and sjcnn denotes a CNN model including j single

CNN blocks.

Accuracy Dev.A Dev.B Dev.C Ave.(B,C) Parameters
Baseline [1] 58.9 45.1 46.2 45.6 -

(±0.8) ±3.6 ±4.2 ±3.6
Best model of DCASE 68.4 63.3 63.9 63.6 12M
2018 task 1B [16]
E-0-noMu(db4cnn) 65.2 56.7 65.0 60.8 1,241,690
E-0-Mu(s3cnn) 69.0 60.0 66.1 63.1 401,610
E-2-Mu(db2cnn) 70.3 63.3 63.9 63.6 809,724
E-5-Mu(s4cnn) 68.1 66.7 63.9 65.3 721,451
E-5-Mu(db2cnn) 70.1 61.1 62.8 61.9 1,007,871
E-10-Mu(db4cnn) 67.1 61.7 70.0 65.8 1,836,388
E-15-Mu(db4cnn) 68.7 65.6 66.7 66.1 2,166,633
E-15-Mu(db2cnn) 70.8 59.4 60.0 59.7 1,668,361
E-15-noMu(db4cnn) 64.8 58.3 65.0 61.7 2,166,633
E-20-Mu(db4cnn) 66.4 64.4 64.4 64.4 2,496,878
E-20-Mu(s4cnn) 71.4 62.8 63.9 63.3 1,712,186
Ecnn-15-Mu-s2cnn 62.8 55.6 53.3 54.4 31,415,206

Table 2. Class-wise average accuracy of Device B and C

of the E-15-Mu(db4cnn) system on the test set compared to

the baseline system and the best model of DCASE 2018 task

1B [16].
Scene labels Baseline [1] Best model of DCASE Proposed

2018 task 1B [16]
Airport 72.5 58.3 47.2
Bus 78.3 80.6 77.8
Metro 20.6 41.7 30.6
Metro station 32.8 61.1 75.0
Park 59.2 91.7 91.7
Public square 24.7 55.6 47.2
Shopping mall 61.1 75.0 83.3
Street pedestrian 20.8 50.0 63.9
Street traffic 66.4 83.3 83.3
Tram 19.7 38.9 61.1

Average 45.6 ± 3.6 63.6 66.1

model used in the challenge. Furthermore, we evaluated dif-

ferent CNN structures as a high-level feature extractor for the

MoE fully connected layer as well as the effect of the num-

ber of experts of the MoE layer. The model is able to deal

with the mismatch of the recording devices in the DCASE

2018 challenge data. In addition, we show that the mixup

data augmentation is really useful in our system leveraging

the performance.
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